Turbulent Transport of Toroidal Angular Momentum in Low Flow Gyrokinetics

نویسندگان

  • Felix I. Parra
  • Felix I Parra
  • Peter J Catto
چکیده

We derive a self-consistent equation for the turbulent transport of toroidal angular momentum in tokamaks in the low flow ordering that only requires solving gyrokinetic Fokker-Planck and quasineutrality equations correct to second order in an expansion on the gyroradius over scale length. We also show that according to our orderings the long wavelength toroidal rotation and the long wavelength radial electric field satisfy the neoclassical relation that gives the toroidal rotation as a function of the radial electric field and the radial gradients of pressure and temperature. Thus, the radial electric field can be solved for once the toroidal rotation is calculated from the transport of toroidal angular momentum. Unfortunately, even though this methodology only requires a gyrokinetic model correct to second order in gyroradius over scale length, current gyrokinetic simulations are only valid to first order. To overcome this difficulty, we exploit the smallish ratio Bp/B, where B is the total magnetic field and Bp is its poloidal component. When Bp/B is small, the usual first order gyrokinetic equation provides solutions that are accurate enough to employ for our expression for the transport of toroidal angular momentum. We show that current δf and full f simulations only need small corrections to achieve this accuracy. Full f simulations, however, are still unable to determine the long wavelength, radial electric field from the quasineutrality equation. PACS numbers: 52.25.Fi, 52.30.Gz, 52.35.Ra Submitted to: Plasma Phys. Control. Fusion Turbulent transport of toroidal angular momentum in low flow gyrokinetics 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Study of Ion Toroidal Rotation in the Presence of Lower Hybrid Current Drive in a Tokamak

In this thesis, the effect of the lower hybrid current drive on ion toroidal rotation in a tokamak is investigated theoretically. Lower hybrid frequency waves are utilized to drive non-inductive current for steady state tokamaks and ion toroidal rotation is used to control disruptions and improve confinement. It has been observed in many tokamaks that lower hybrid waves can change the ion toroi...

متن کامل

Conservation of total energy and toroidal angular momentum in gyrokinetic particle-in-cell simulations

Predictive transport simulations of tokamak discharges are continuously improving thanks to increasing computational resources available and to the efforts made in code development. As an example of the progress, a recent work [1] with the Elmfire code demonstrates the ability of global gyrokinetic full f electrostatic particle simulations, including both neoclassical and turbulence physics, to...

متن کامل

Transport of Toroidal Magnetic Field by the Meridional Flow at the Base of the Solar Convection Zone

In this paper we discuss the transport of toroidal magnetic field by a weak meridional flow at the base of the convection zone. We utilize the differential rotation and meridional flow model developed by Rempel and incorporate feedback of a purely toroidal magnetic field in two ways: directly through the Lorentz force (magnetic tension) and indirectly through quenching of the turbulent viscosit...

متن کامل

Transport of momentum in full f gyrokinetics

Full f gyrokinetic formulations employ two gyrokinetic equations, one for ions and the other for electrons, and quasineutrality to obtain the ion and electron distribution functions and the electrostatic potential. This article shows with several examples that the long wavelength radial electric field obtained with full f approaches is extremely sensitive to errors in the ion and electron densi...

متن کامل

Spécialité : Physique Des Plasmas Contents

The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an underst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009